Check if a vector field is conservative

Monday, March 29, 2021 4:15 PM

$$F = \langle I, Q \rangle$$
How to check of F is conservative?
There are two methods:
(D) Set $fx = I$, $f_0 = Q$ and try to find f.
En $F = \langle 2x_0, x^* \rangle$
 $f_1 = 2x_0 \longrightarrow f = x^2_0 + (Q)$
 $f_2 = x^2 + C(Q) \longrightarrow C'(Q) = O \longrightarrow C(Q) = O$.
 $f(x,y) = a^2y$.
(R) Observation: if $F = \langle P, Q \rangle = \langle f_1, f_0 \rangle$ then $I_2 = Q_2$.
 $I_1 = I_0 \neq Q_1$ then F is not a conservative vector field.
It is, in general, not true that $I_0 = Q_1$ implies F is
a conservative vector field.
En $F = \langle -\frac{y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \rangle$
 $F = \langle f_1 = \frac{y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \rangle$
 $F = \langle f_1 = \frac{y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \rangle$

* Simply connected domain; no holos, no separated pieces.





